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AbstracL ?'be e4 polential b widely employed for modelling systems that undergo 
displadve phase transition of the soft mode or orderldisoder. A molecular dynamic 
himulation is used to establish where lhe crossover lies bemeen the two regimes, con- 
sidefining both limils of long range and short range intenite interactions It appears that 
with both ranger of interaction the crossover ~ U I S  when the onsite potenlial changer 
from a single 10 a double well, The behaviour of the soft mode frequency w h also 
investigated, and in particular the ratio of the slopes d w l / d T  between T > Tc and 
T < T.. We find this ratio attains the value -2 given by standard renormalized phonon 
lheory on@ the double limit of long range coupling and exireme soft mode behaviour. 
The order parameter varia as (T, - T)'I2 over a wide temperature range. as observed 
in several materials. in this double limit only. 

1. Introduction 

The a4 model on a lattice is widely employed for modelling materials that undergo 
a displacive structural phase transition. The model is able to cover a wide range of 
phenomena, from the so-called soft mode behaviour (SO,, NaNO,, biphenyl, ...) to 
the ordeddisorder type of transition (NaNO,, NH4Cl, ...). In the soft mode limit, the 
phase transition can be described in terms of renormalized phonon theory (Bruce 
1980). In this, the system possesses a lattice vibration mode which softens as the 
temperature decreases toward T,. At the critical temperature, this particular mode 
freezes completely so a static field of displacement of atom positions is indueed 
within the structure. In the extreme opposite case, the system is described by an 
order/disorder dynamical behaviour characterized by atoms or clusters fluctuating 
between two more-or-less discrete states. The length of correlation in time and space 
grows as the temperature approaches T, and finally diverges on it (Bruce 1980). 

For the following, we consider the Hamiltonian form, the so-called model: 

where the parameters a and y represent the on-site parameter ( y  > 0) and the 
Jijs represent the pairwise intersite interactions. The variable Vi can stand for the 
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rotation of the tetrahedral cluster in quartz or another such generalized coordinate. 
It a n  also represent the displacement of the central atom in the unit cell in the 
perowkite family, such as the titanium in BaTiO,, or the torsion of the benzene rings 
relative to each other in crystalline biphenyl (Benckert 1987). The parameter m is a 
corresponding generalized inertia. The coupling terms Jijs determine the wave vector 
at which the phase transition occurs. By considering stmng competition between the 
J i j s  for example, one recovers the Janssen model used for modelling displacive 
modulated structures (Janssen 1986). For our purpose, we shall only consider a 
ferrodistortive phase transition by choosing the following exchange interaction: 

(LZu, b) [ J / z  > 0 for certain ( i , j )  neighbours J . .  = 
‘I  0 otherwise 

where (1.2~) applies to the z closest neighbours to a given site and we can vary z 
from z = 6 (extreme short range) to z = N (extreme long range). Here N is the 
total number of atoms in our computer simulation, Note that the Hamiltonian (1.1) 
which depends on four parameters ( m , a , y  and Jij) can take a simpler form by 
rescaling U,, the time T and the Hamiltionian as follow: 

... . . .  
U; -* m u i  ( 1 . 3 ~ )  

T - m T  (1.36) 

(1 .3~)  

Aside from the range z, the right-hand side of equation (1.3~) depends on the unique 
combination ( c r / J )  which controls the on-site potential shape, i.e. single or double 
well as (a/J) is positive or negative, and also the well depth. By considering the 
total energy when all ti = U,,, it is easy to show that there is no phase transition 
unless ( a / J )  < 1. We shall refer to 

a / J 5  1 

as the soft mode limit. Note also that the above Hamiltonian describes an optic 
mode of the variable U;, but this does not restrict the generality of our discussion 
as it is always possible to recover an acoustic mode for the variables by the 
transformation = Ui+l - V i .  It is not thought that the particular form (1.2) 
adopted for J i j  influences the phase transition materially, except for in the range Z .  

We conclude from (1.3) that the model is specified by two parameters, namely 
( cx / J )  and the range z. Of these, it is well established that the on-site potential is 
the main factor controlling the behaviour of the system. For a single anharmonic well 
for the on-site potential, i.e. for ( a / J )  near the limit (1.4), it is well accepted that 
the model leads to a soft mode [ype of behaviour whose displacement on lowering 
T freezes at T,. In the opposite case, for a deep double-well on-site potential with 
(a/J) < 0, i.e. with large ‘hump height’ (figure 1) compared to the coupling terms, 
it is also well established that the Q4 describes an order/disorder dynamic system 
because it approaches an king model with Ui near the bottom of one of the wells. 
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Figure 1. Double-well on-site potential. One argu- 
hen1 places the crossover between soft mode limit 
and orderidisordcr when T, = TO where To is 
defined in the text. 

However the precise location of the crossover between these two behaviours is far 
from clear in the literature (Blinc and Zeks 1974, Aubry 1975). 

In fact, there exist two reasonable arguments centring the crossover between soft 
mode and order/disorder at two different locations. A trivial argument places the 
crossover at a = 0 which is simply the crossover between a single-well and a double- 
well on-site potential. In a less obvious argument, the crossover is bed  when the 
critical temperature has the same energy as the 'hump height' of the double well, 
for some negative a. By using a mean field estimate T, (Bline and Zeks 1974), we 
deduce that such a crossover occurs at 01 = -J. The argument is as follows. When 
the kinetic energy of the entities U; exceed the barrier between the two wells, the 
system can oscillate across the whole double well, and hence one might suppose that 
for T > To in figure 1 the effect of the central hump can be neglected. In that case 
one would expect that a system with T, > To would still exhibit soft mode behaviour 
at T > T,. When, on the contrary, T, < To, the system, on lowering the temperature, 
would settle into one half of the double well at T = To (Normand ef af 1990) and 
hence would show order/disorder behaviour a t  the lower temperature T,( < To). This 
argument therefore centres the crossover at T, = To which translates approximately 
into ( a / J )  = -1  as already remarked. In this paper, we wish to establish, with the 
help of computer simulation, the location of the crossover (a/J), in model (1.3~) 
between the order/disorder and soft mode behaviours. We also wonder whether 
the result depends on the range of the coupling between the entities Vi. For this 
purpose, we use a molecular dynamics simulation (MDS) of the model (1.3~) in the 
two limits of nearest neighbour coupling (t = 6)  and that of long range coupling 
( z  = 4095). In both cases, we consider the power spectrum of the order parameter 
fluctuations that exhibits the soft mode for different values ( a / J )  and at different 
temperatures. In the short range limit, we use a least square fit of the autocorrelation 
function for various computational reasons discussed in section 2 In section 3 we 
discuss the criterion that we use for characterizing the solt mode and ordeddisorder 
types of transition. In section 4 we discuss the crossover location on the basis of 
the MDS results in the short range coupling limit, and in section 5, in the long range 
coupling limit We find that for both long range coupling and short range coupling 
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the crossover is close to zero: 

a / J , S S .  (1.5) 

Below this critical value (lS), i.e. at (&/.I) = -0.25, the system already has an 
order/disorder behaviour and there is still a softish mode, although it ceases to soften 
completeiy to w = 0. 

We want to emphasize that the model (1.3) belongs to the same universality 
class as the king model for all values of ( a / J )  (Bruce 1980). The nature of the 
critical fluctuations is therefore the Same in the soft mode and order/disorder regimes 
and cannot determine the crossover between them. In both regimes, the system 
near T, contains islands of order, with a central peak in the correlation function 
S ( q , w )  describing their relaxation behaviour (Schneider and Stoll 1975). This is 
somewhat paradoxical because, in the order/disorder regime, there remains near T, 
the additional ‘resonant’ peak at non-zero w, while in the soft mode regime this 
peak has shifted to zero frequency near T, and has been swallowed up in the critical 
fluctuations. Our results show how this paradox is resolved. In the order/disorder 
regime, the weight tends to zero as T tends to T, so that it ‘disappears’ in that sense. 
Thus, to leading order in IT - TJ the critical fluctuations are the same in the two 
cases. In any case, the critical fluctuations are a side issue for another reason: we 
are discussing the behaviour of the system over a broad temperature range, typically 
from 0.5 T, to 1.5 or 2 times Tc, not particularly in the narrower Ginzburg interval 
dominated by critical fluctuations around T,. Our simulations also clarify another 
issue as is described below. 

In the soft mode regime we have that 

~’(7’) 0: (T- T,) 

0: (T, - T) 

for T > T, 
for T < T, 

over quite a wide temperature range 0.5 < T/T, < 2, and one often considers the 
ratio slopes in (1.6) 

R = (dW2/dTlT<T./(dWZ/dT)T,T.. (1.7) 

Renormalized phonon theory (Bruce 1980) gives the result 

R = -2 (1.8) 

which we shall refer to as the standard value. However, experimentally R often differs 
substantially from the standard value (1.8), as, for example, in bismuth vanadate with 
R = -2.7 (Pinnuk er a1 1978, 1979). Our simulations will show that the standard 
value (1.8) is obtained if and only if two conditions are satisfied: namely, that ( a / J )  
is near the soft mode limit (1.4) and that we have long range interaction (t large). 
This is consistent with (1.8) being given by renormalized phonon theory because the 
latter effectively makes two approximations, namely replacing the on-site well by an 
effective potential in the form of a parabola and treating the interactions by mean 
field theory. 

The ratio R may not be of great importance in itself, but the issue of the standard 
value (1.8) is linked to another matter of some interest. Quite a number of materials 
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are known to undergo a structural phase transition where the order parameter U ( T )  
for T < T, follows the simplest Landau theory 

U( 7') K (2'. - T)' (1.9) 

with p = 1/2 over a surprisingly wide range of temperature e.g. LaAIO,, As,O, and 
others (Salje et a/ 1991, Salje 1990). These contrast with other materials, and with 
computer simulations where the exponent in (1.9) lies anywhere in the range 0.3 to 
0.5 (outside the Gmburg region of critical fluctuations) (Giddy e~ a1 1989, 1990). 
If wz(T) varies linearly (1.6) below T,, as it does in our simulations in the case 
studied, then the standard value R = -2 (1.9) is equivalent to the simple Landau 
result p = 1/2, and the pair of conditions that applies to the former is also necessary 
for the latter. As already remarked, one of the conditions is that the interaction J i j  
should be long ranged, and it is interesting to note that interactions of infinite range 
occur in ferroelastic phase transitions where the coupling is mediated by elastic strain 
(Marais ef aIl991, 1992). The present work therefore contributes to an understanding 
of materials obeying (1.9) with p = lL2 over a wide temperature interval, and this 
spin-off may be more significant than the original purpose of locating the crossover. 

2. Molecular dynamics simulation 

The molecular dynamics simulation (MDS) of the Hamiltonian (1.3~) is performed on 
a parallel processor array (AMT-DAP, Cambridge) and runs on a lattice of 16X16X16 
elements with periodic boundary conditions. We consider the two extreme ranges of 
interaction already introduced below (1.2). namely a coupling to the L = 6 cubic 
nearest neighbours for only short range, and equal coupling to all other elements 
in the simulation for long range ( z  = 4095). In both cases, the simulations are 
performed within the framework of a microcanonical ensemble (see Dove 1988 for 
details). In the self-consistent renormalized phonon theoly (Bruce 1980), the soft 
mode belongs to the normal coordinate representing the wave vector q at which the 
transition occurs. For our case of a ferro-type transition, we have q = 0 (r mode) 
with normal coordinate given by the mean displacement 

and the order parameter is the time average of the above quantity U( 7). As usual, 
the frequency of the mode is determined from the power spectrum of the fluctuation 
correlation function given here by 

s(w,q = 0) = d r  e-'"'(U(r = o)u(T)). (22) J 
The above expression is known to carry two important features (Schneider and Stoll 
1973, 1975, 1978), namely, a resonant peak centred around a temperature dependent 
frequency wR, i.e. the phonon mode in which we are interested, and a 'central peak' 
around w = 0. Thus, the power spectrum can be written in the form: 

S(w,q = 0) = 2 A B / ( B 2  4- w') + C D / [ D '  + (w - uR)'] (2.3) 
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where A,B,C, D and wR are the parameters to be determined. This corresponds 
to a correlation function in time: 

S(T) = Ae-Br + Ce-D' C O S ( W ~ + ) .  (2.4) 

Experimentally one measures S(w,q = 0) .  but this is not a satisfactory quantity 
in a finite system as small as in our computer simulation. The important point to 
note is that the form (24) would apply to an infinite system. In our case, it only 
applies for times T less than the circulation time T~ for a signal to pass around 
the computer sample, i.e. for a fluctuation to propagate to the edge of the system 
and to reappear by the periodic boundary conditions on the opposite side. Such a 
circulation dominates S(T) for T greater than T~ causing erratic fluctuations in it. 
Our procedure is therefore to determine wR, A, B, C and D by fitting the form (2.4) 
to the correlation function S( T )  for T < T~ only. We then have from (2.3) the power 
spectrum S ( w )  of an effective infinite system. This corresponds to removing the tail 
of the computational S ( r )  and replacing it by the tail appropriate for an infinite 
system. However, that procedure is not applicable for infinitely long range coupling 
of z = 4095 in our case because the velocity of sound c is then infinite. In that case, 
the power spectrum that we consider is given by the square of the Fourier transform 
of the order parameter (2.1) (Dove 1988). 

In both cases, we report the soft mode frequency wR, its width and the power 
spectrum for different values of ( a / J )  and different temperatures (figures 3 to 7). 
In the short range coupling limit, we also report the height A/B of the central peak 
(figure 6). 

3. The crossover criterion 

The main issue is to establish a sharp criterion as to whether the system is behaving 
in an orderidisorder or soft mode manner. Clearly we have orderidisorder behaviour 
if wR is non-zero at all temperatures T around TC, i.e. if the resonant peak of S(w)  
remains identifiably separate from the central peak Conversely, if wR tends to zero 
at T, we have soft mode behaviour, but there would appear to be a problem: how 
can we tell the behaviour of wR near T, when wR is so small that the two peaks 
overlap and merge? This problem is not as severe as it sounds because the expected 
behaviour of wR is shown in figure 2 due to damping. Remember that a simple 
harmonic oscillator with inherent undamped frequency R and damping y oscillates 
with frequency 

Figure 2. Expected behaviour of WR(T) near T. in the 
so11 mode regime (schematic and enlarged). Bold line: 
frequency as observed: light line: ideal undamped [re- 

rc  T quency. 



Dirphcive and orderldiorder in the cP4 model 4901 

and that the response is diffusive in the overdamped regime 52 < y. Therefore, if we 
expect the undamped [wRU(T)]* to extrapolate linearly to zero at Tc, the observed 
wR(T)  actually disappears over a region of temperature around T,  (figure 2). This is 
seen for example in figure 3(a), (b). Presumably critical fluctuations will also affect the 
behaviour near T, in another way so that the two straight lines (1.6) in figure 2 need 
not intersect zero exactly at T,. The situation is further illuminated by considering 
the behaviour of the central peak. In an order/disorder situation one has a diffusive 
(non-oscillatory) local flipping between two rather distinct states, and indeed this can 
be taken as an alternative definition of ordeddisorder character. In consequence 
the weight of the central peak is large over a wide temperature range above Tc (and 
presumably quite widely spread in q-space), as seen in figure 4(d) where the individual 
atoms flip between the two sides of the local double well. In the soft mode regime 
there is also a central peak, but of slightly different origin. This occurs only near T, 
(figure 4(n)). Even when the onaite well is a single well, the total energy of the system 
below T, has two possible minima due to the addition of the interaction Ji,; othenvise 
there would be no phase transition. Thus near Tc there are clusters of sufficient 
size to show the two possible minima of the total energy and hence diffusive flipping 
between them, or rather diffusive motion of cluster boundaries. These are fluctuations 
of the order parameter largely conlined to temperature around T, (figure 4(b)) and 
presumably to a region near q = 0 in reciprocal space. The fluctuations of the order 
parameter and oscillations of the soft mode are motions of the same character. Thus 
the soft mode resonance peak is in a sense swallowed up into the central peak near 
T, in the soft mode regime when the soft mode becomes overdamped (figure 2). 

. 

4. Behaviour with short range coupling 

In the short range coupling limit i.e.. nearest neighbour interaction, we first consider 
the case ( a / J )  = 0.5 corresponding to a single-harmonic-well potential anharmoni- 
a l l y  perturbed. The power spectrum at different temperatures above and below T, 
is presented in figure 5. The phonon peak frequency softens when the temperature 
is decreased, and increases again below T,. In figure 3(z), the frequency squared is 
plotted versus the temperature. The ‘square’ in figure 3(u) represents the region of 
difficulty in fitting form (2.3) of the correlation function to the computational data: 
no wR could be fitted. It corresponds to the central region in figure 2 where S( 7 )  

is expected to be the sum of two real exponentials and not of the form (2.3). We 
conclude that ( a / J )  = 0.5 is definitely in the soft mode regime according to the 
criterion of section 3. Figure 4(u) depicts the integral of the central peak versus 
temperature. Note that the maximum occurs at T, due to the critical fluctuations 
(Schneider and Stoll 1978). For ( a / J )  = 0, the same discussion can be applied 
to the data of figures 3(b) and 4(b): they also characterize a soft mode behaviour. 
However, for both ( a / J )  = -0.25 and -2, the situation is radically different. In 
figures 6 ( a / J  = -2) one obtains a wide phonon peak, i.e. strongly damped, which 
nevertheless persist throughout the critical temperature, as shown in figures 3(c) and 
(d).  This is the signature of order/disorder behaviour. Note however that its weight 
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relative to the central peak tends to zero at T, in accordance with the discussion of 
section 1. We note that for (a/J) = -2 the central peak persists over a wide range 
of temperature (Bgure 4(d)). Near T, a 1.27 this is, once more, due to clusters, as in 
the soft mode regime, i.e. to critical fluctuations. However, the central peak cannot 
be due to critical fluctuations because at high temperature the correlation length is 
very short: it is, rather, due to local excitation from one side of the double well to 
the other (Schneider and Sroll 1978). 

Figure 5. Power rpeclrum at dilferent lempcralum mulling fmm filling (2.3) in the 
nears1 neighbour coupling limil lor ( a / J )  = 05. The reduced temperalurr t = 
(T  - Tc)/Tc is indicated in the figures A central peak occurs near T. wheR critical 
cluslering dominates. 

The location of the crossover according to the results outlined above is formally 
between the values -0.25 and 0. The argument placing it at -1 is definitively 
inconsistent with the dam, the other one i.e. (a/J), = 0, however, is still just 
within the range and we can only place it within that interval, i.e. between -0.25 and 
0. 

5. Behaviour with long range coupling 

We wish to check whether the above conclusion about the crossover depends on 
the range of interaction between the Uis, and we now use the extreme long range 
coupling version of (1.3~) to test this as described in section 2 In figure 7(a), the 
squared frequency versus T for ( a / J )  = -0.25 is shown for the long range coupling 
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Figurt 6. Power spectrum for (a1.J) = -2 in the nearest neighbour coupling limit. 
Note the strong persistent central peak at all T related to the orderldisorder dynamical 
pmcss  I is the reduced temperature as in Bgure 5. 

limit. The phonon mode frequency can be followed all through T, which, according 
to section 3, corresponds to an order/disorder behaviour. In figure 7(b) the squared 
frequency is presented for ( o l / J )  = 0. Note that the phonon mode can be followed 
until it almost vanishes, even at 1 = 0.04. We therefore have no region of overdamped 
fluctuations, such as was denoted by the square box in figure 3(a), (b). In the long 
range coupling limit, we expect from theory that critical fluctuations are absent, so the 
central peak does not overshadow the phonon peak. For ( o l / J )  = 0 the latter can 
be followed until w 0 and we have soft mode limit behaviour again. We therefore 
conclude that the range of coupling does not change the nature of the transition and 
hence the location of the crossover. 

6. Variation of sof7 mode frequeney 

We have already discussed in section 1 the importance of the variation of w 2 ( T )  with 
temperature and the ratio R (1.7) of the slopes below and above T,. In particular, 
R being equal to the standard value -2 given by (1.8) together with w z ( T )  varying 
linearly with T below T,, indicates that the order parameter has the simplest Landau 
form (1.9) with p = 1/2 for its temperature variation. 

An obvious question arises within the framework of the present study: what is the 
necessary and sufficient condition for model (1.3~) to give the standard ratio R = -2 
(1.8)? Our MDS result., enable us to establish this. In table 1 we present the values 
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Flgrve 7. Soft mode s q u a d  yems temperature in the long q e  coupling limit. The 
vertical bars denote the broadening as  in iigure 3. (0) (e/ J). = 0; the soft mode softens 
completely at Tc e a52 (b) (013) = -0.- the son mode d w  not soften completely. 
Note that both results are in agreement with the short range coupling results. The range 
of interaction has no effect on the type of transilion (son mode or orderldisordw regime). 

Tabk L Slope ratio R of the soft mode frequency squared bemeen T < T, and 
T > Tc for different value of the potential parameter (ala in the long range and 
short range coupling limitb Note that the standard ratio -2. which is found in self- 
consistent renormalized phonon theory, is closely approached in the extreme long range 
coupling limit combined with the d i s p l a h  limit. 

e/ J -05 -0.25 0.0 03 05 
~ 

R Long range -55 -3.0 -27 - -23 
Shod range -105 -8.0 -9.5 -6.0 -7.0 

of the ratio R (1.7) for various values of (a/J) in the soft mode regime for both 



fiphcive and orderidhrder in fhe model 49M 

short and long range coupling. For the short range case, the ratio R differs strongly 
from the standard -2 and does not, even in the soft mode limit ( a / J )  + 0, improve 
significantly. In the opposite case, the long range interaction already gives R = -2.6 
at ( a / J )  = 0, close to the crossover location. The ratio at ( c r / J )  = 0.5 improves 
to R = -23. This suggests that from MDs, the necessary and sufEcient condition to 
obtain the standard ratio R = -2 as given by renormalized phonon theory is to be 
in the soft mode limit ( a / J )  -* 1 with long range coupling. Both conditions must 
be satisfied. 

This result could have been predicted if we had considered carefully the approx- 
imations used in the renormalized phonon theory. Firstly, the method approximates 
the anharmonic on-site potential by a renormalized harmonic potential. The fit is 
certainly bener in the soft mode limit, i.e. ( a / J )  m 1, where one already has a single 
well. Secondly, the use of the random phase approximation piclrs up the soft mode 
and places it in the mean squared fluctuation of all the other modes. This is typically 
a mean field approximation. In the long range coupling used here, one site is equally 
coupled to all others so there is only one dominant mode in the system: the soft 
mode itself. In that limit the decoupling is natural because one can neglect all the 
other modes which are pushed to a much higher frequency. 

?.Summary 

We have determined the crossover between the soft mode limit and the orderidisorder 
behaviour in the B4 model. Firstly, we have shown that the behaviour is largely 
controlled by the shape of the on-site potential i.e. whether it is a single or double 
well. Secondly, we have used a molecular dynamic study of the system which has 
enabled us to determine its behaviour for a varying shape of the on-site potential. 
Also, we have performed the simulations in the two extremes of long range and short 
range coupling, and in both cases have found that the cmssover appears very close 
to the point where the on-site potential is turned &om a single well to a double well. 
In particular, we have found that for a double well, even for a shallow double well 
in the on-site potential, the soft mode frequency does not tend completely to zero at 
T, as it does in the soft mode regime. 

We have also discussed the variation of the soft mode frequency with temperature, 
in particular the ratio of the slopes dw*(T)/dT below and above T,. We have found 
that the standard ratio R = -2, suggested by the selfconsistent renormalized phonon 
treatment of the @ 4  model is also given by the simulations, but only in the limit of 
long range coupling and with the soft mode limit ( a / J )  1. Therefore, this pair of 
conditions also applies to the order parameter having a temperature variation given 
by the simplest Landau form (1.9) with p = In. The fact that such materials exist, 
with order parameters of simple forms over a wide range of T, suggests they have 
long range coupling mediated by strain (Marais ef a1 1991, 1992). 
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